Welcome from the Adhesive Experts of Evonik

Discover our product portfolio designed for the Adhesives & Sealants Industry. Based on our different polymer backbone systems, we develop individual solutions according to your needs.

YOUR BENEFITS – OUR VALUES

Focus on customer orientation
We are a solution provider. Our mission is to create tailor-made solutions to ensure that every one of your projects is a success. That is why we are considered to be the first choice when it comes to solving your challenging tasks. Thanks to our global presence we can respond promptly and make your individual wishes come true.

Perfectly targeted expertise
With our team of adhesive experts and our dedicated sales force, you can be assured that we offer a wealth of expertise. We do not only provide you with capabilities spanning from research and development through to logistics, but we can also offer you valuable market knowledge and in-depth technical expertise. That is why our know-how is spot-on, every time.

Absolute reliability
Any good business partnership is based on reliability. There is nothing more valuable than knowing that your business partner will be there for you. We take this to heart and offer you excellent product quality, security of supply and our continuous drive to make your challenges our own – this way we help you overcome any obstacle along the way.

Profiting from future orientation
Improving performance and efficiency can only be accomplished if you constantly stay ahead. That is why we identify future trends as early as possible, collaborating with you to develop innovative solutions. Our foresight is valued by customers and partners alike, because they know that we always keep an eye on the future to guarantee long lasting success.

YOUR MARKETS – OUR FOCUS

We offer custom-made Adhesive & Sealant solutions for a broad spectrum of industries. If you don’t find your line of business here, just talk to us. Our team will gladly help you accomplish your project.

- Automotive
- Construction
- Packaging
- Electronics
- Processing Aides
- Product Assembly

YOUR SOLUTIONS – OUR BRANDS

- DYNACOLL®
 Polyester-Polyols, Copolyesters, Polyacrylates
- VESTOPLAST®
 Amorphous Poly-Alpha-Olefines
- VESTOWAX®
 Fischer-Tropsch-Waxes
- POLYVEST®
 Liquid Polybutadienes
- DEGALAN®
 Methacrylate Binders for Heat Seal Lacquers

Our Product Range

With our POLYVEST® grades, we offer a range of stereospecific, low-viscous and unsaponifiable liquid polybutadienes of different chemical composition. They are used in a broad field of adhesive and sealant applications.
LIQUID POLYBUTADIENES

With POLYVEST®, Evonik’s Adhesive Resins Product Line offers a range of stereospecific, low viscous and unsaponifiable liquid polybutadienes of different chemical composition. Based on their characteristic microstructure all POLYVEST® grades exhibit an excellent reactivity and could be used for a broad field of applications. The unsaturated polymer backbone of all POLYVEST® grades offers the opportunity for various crosslinking options like sulfur curing and oxidative drying. In addition the functional moieties of POLYVEST® HT and POLYVEST® MA make further options for crosslinking and polymer modification feasible.

POLYVEST® - non-functionalyzed liquid polybutadienes
POLYVEST® MA – maleic anhydride-functionalyzed liquid polybutadienes
POLYVEST® HT – hydroxyl-terminated liquid polybutadienes

Further information

• Low viscosity
• Excellent chemical resistance to acids and bases
• High water resistance
• Excellent electrical insulation properties
• Low temperature flexibility
• Low moisture and oxygen permeability

Analytical methods

• Viscosity
 Determination according to DIN EN ISO 3219.

• Acid Number
 Determination according to DIN EN ISO 2114.

• Hydroxyl Number
 Determination according to DIN S3 240-2.

• Peroxide Number
 Determination according to DGF–method: C-VI-6a (84).

• Iodine Number
 Determination according to DIN S3 241.

• Molecular Weight Mn
 Determination via GPC according to DIN S5 627-1, calibrated with polystyrene standard. Determination via GPC calibrated with polybutadiene standard, (POLYVEST® HT).

• Density at 20 °C
 Determination according to DIN EN ISO 2811-1.

• Flash Point
 Determination according to DIN EN ISO 2719.

• Ignition Temperature
 Determination according to DIN 51 794.

• Pour Point
 Determination according to DIN ISO 3016.

• Glass Transition Temperature Tg
 Determination according to DIN EN ISO 11 357-1.

• Gardner Color
 Determination according to DIN EN ISO 4630-2.

• Peroxide Number [mval/kg]
 ≤ 10 ≤ 10 - - -

• Density at 20 °C [g/cm³]
 0.90 - 0.92 0.90 - 0.92 0.95 0.97 0.90 - 0.92

• Flash Point [°C]
 approx. 180 approx. 200 approx. 300 > 300 (DIN ISO 2592) approx. 215

• Ignition Temperature [°C]
 approx. 360 approx. 350 approx. 360 approx. 355 approx. 375

• Pour Point [°C]
 approx. -55 approx. -50 approx. -25 approx. -1 approx. -18

• Tg [°C]
 approx. -100 approx. -99 approx. -95 approx. -92 approx. -80

• Gardner Color
 Determination according to DIN EN ISO 4630-2.

• Ignition Temperature
 Determination according to DIN 51 794.

• Pour Point
 Determination according to DIN ISO 3016.

• Glass Transition Temperature Tg
 Determination according to DIN EN ISO 11 357-1.

Discover our portfolio of liquid polybutadienes

<table>
<thead>
<tr>
<th>Product Range</th>
<th>POLYVEST®</th>
<th>110</th>
<th>130</th>
<th>MA 75</th>
<th>EP MA 120</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viscosity at 20 °C [mPa s]</td>
<td>700 - 860</td>
<td>2,700 - 3,300</td>
<td>6,000 - 9,000</td>
<td>approx. 61,000 (23°C)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Viscosity at 30 °C [mPa s]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>approx. 30,000</td>
<td>4,000 - 5,500</td>
<td></td>
</tr>
<tr>
<td>Acid Number [mg KOH/g]</td>
<td>≤ 0.3</td>
<td>≤ 0.3</td>
<td>70 - 90</td>
<td>approx. 130</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl Number [mg KOH/g]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44 - 51</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Peroxide Number [mval/kg]</td>
<td>≤ 10</td>
<td>≤ 10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Typical Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Form</td>
<td>viscous liquid</td>
<td>viscous liquid</td>
<td>viscous liquid</td>
<td>viscous liquid</td>
<td>viscous liquid</td>
<td></td>
</tr>
<tr>
<td>Molecular Weight Mn [g/mol]**</td>
<td>approx. 2,600</td>
<td>approx. 4,600</td>
<td>approx. 3,000</td>
<td>approx. 3,200</td>
<td>approx. 2,900***</td>
<td></td>
</tr>
<tr>
<td>Iodine No. [g iod/100g]</td>
<td>420 - 480</td>
<td>420 - 480</td>
<td>380 - 420</td>
<td>380 - 420</td>
<td>420 - 440</td>
<td></td>
</tr>
<tr>
<td>Density at 20 °C [g/cm³]</td>
<td>0.90 - 0.92</td>
<td>0.90 - 0.92</td>
<td>0.95</td>
<td>0.97</td>
<td>0.90 - 0.92</td>
<td></td>
</tr>
<tr>
<td>Gardner Color</td>
<td>≤ 1</td>
<td>≤ 4</td>
<td>≤ 2.5</td>
<td>≤ 2.5</td>
<td>≤ 1</td>
<td></td>
</tr>
<tr>
<td>Flash Point [°C]</td>
<td>approx. 180</td>
<td>approx. 200</td>
<td>approx. 300</td>
<td>> 300 (DIN ISO 2592)</td>
<td>approx. 215</td>
<td></td>
</tr>
<tr>
<td>Ignition Temperature [°C]</td>
<td>approx. 360</td>
<td>approx. 350</td>
<td>approx. 360</td>
<td>approx. 355</td>
<td>approx. 375</td>
<td></td>
</tr>
<tr>
<td>Pour Point [°C]</td>
<td>approx. -55</td>
<td>approx. -50</td>
<td>approx. -25</td>
<td>approx. -1</td>
<td>approx. -18</td>
<td></td>
</tr>
<tr>
<td>Tg [°C]</td>
<td>approx. -100</td>
<td>approx. -99</td>
<td>approx. -95</td>
<td>approx. -92</td>
<td>approx. -80</td>
<td></td>
</tr>
</tbody>
</table>

* EP = Experimental Product
** = Determination via GPC calibrated with polystyrene standard
*** = Determination via GPC calibrated with polybutadiene standard
POLYVEST® Liquid polybutadienes of different chemical composition

POLYVEST® 110
- Stereospecific, low viscous and unsaponifiable liquid polybutadiene manufactured by Ziegler-Natta polymerization. Due to its microstructure and high 1,4-cis double bonds, the apolar and highly hydrophobic polybutadiene is a highly reactive and crosslinking binder, providing benefits to a broad field of applications.
- Microstructure:
 - x = 1,2-vinyl double bonds [%]: ~ 22
 - y = 1,4-trans double bonds [%]: ~ 20
 - z = 1,4-cis double bonds [%]: ~ 78
- Typical properties (selected):
 - Viscosity @ 30°C [mPa s]: 6,000 - 9,000
 - Glass transition temperature [°C]: -99
- Performance characteristics:
 - Excellent chemical resistance to acids and bases
 - Low temperature flexibility
 - Good compatibility in aliphatic, aromatic and ethers

POLYVEST® 130
- Stereospecific, low viscous and unsaponifiable liquid polybutadiene manufactured by Ziegler-Natta polymerization. Due to its microstructure and high 1,4-cis double bonds, the apolar and highly hydrophobic polybutadiene is a highly reactive and crosslinking binder, providing benefits to a broad field of applications.
- Microstructure:
 - x = 1,2-vinyl double bonds [%]: ~ 22
 - y = 1,4-trans double bonds [%]: ~ 20
 - z = 1,4-cis double bonds [%]: ~ 78
- Typical properties (selected):
 - Viscosity @ 30°C [mPa s]: 6,000 - 9,000
 - Glass transition temperature [°C]: -99
- Performance characteristics:
 - Excellent chemical resistance to acids and bases
 - Low temperature flexibility
 - Good compatibility in aliphatic, aromatic and ethers

POLYVEST® HT
- Is a liquid hydroxyl-terminated polybutadiene manufactured by radical polymerization. The polymer exhibits a highly hydrophobic polybutadiene backbone and primary hydroxyl groups that are accessible for precise chemical modifications. With a hydroxyl functionality of appx. 2.4, POLYVEST® HT is used as polycomponent in various adhesive and sealant applications.
- Microstructure:
 - x = 1,2-vinyl double bonds [%]: ~ 1
 - y = 1,4-trans double bonds [%]: ~75
 - z = 1,4-cis double bonds [%]: ~ 25
- Typical properties (selected):
 - Viscosity @ 20°C [mPa s]: 4,000 - 5,900
 - Hydroxyl number [mg KOH/g]: 44 - 51
 - Molecular weight Mn [g/mol]: ~ 2,900
 - Hydroxyl functionality: ~2.4
 - Glass transition temperature [°C]: -80
- Performance characteristics:
 - Excellent chemical resistance to acids and bases
 - Low temperature flexibility
 - Good compatibility in aliphatic, aromatic and ethers

POLYVEST® MA 75
- Is a maleic anhydride functionalized abdum of a low molecular weight 1,4-cis polybutadiene which is successively grafted by maleic anhydride groups randomly distributed along the polymer chains. This makes the original apolar polybutadiene more polar and accessible for various chemical reactions. Further maleic anhydride functionalized abdums differing in maleic anhydride content and viscosity may be available, e.g. POLYVEST® EP MA 120.
- Microstructure:
 - x = 1,2-vinyl double bonds [%]: ~ 22
 - y = 1,4-trans double bonds [%]: ~ 22
 - z = 1,4-cis double bonds [%]: ~ 22
- Typical properties (selected):
 - Viscosity @ 20°C [mPa s]: 6,000 - 9,000
 - Acid number [mg KOH/g]: 70 - 90
 - Glass transition temperature [°C]: -95
- Performance characteristics:
 - Excellent chemical resistance to acids and bases
 - Excellent electrical insulation properties
 - Low temperature flexibility
 - Good compatibility with long-oil Alkyd resins, male melamine and other melamine resins
 - Good solubility in aliphatic, aromatic and ethers

Export regulations
POLYVEST® HT is subject to export control measures by German Export Control Authorities. An approval by this organization may be required for export.

Compatibility of POLYVEST® grades with binders and resins

<table>
<thead>
<tr>
<th>POLYVEST®</th>
<th>110</th>
<th>130</th>
<th>MA 75</th>
<th>EP MA 120</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylic resins</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Nitrocellulose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hydrocarbon resins</td>
<td>+ + ◦ ◦ +</td>
<td>+ ◦ ◦ +</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Glycerol resin esters</td>
<td>– ◦ ◦ ◦ –</td>
<td>– – ◦ ◦ –</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Styrene-alkyd resins</td>
<td>– – – – –</td>
<td>– – – – –</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Maleic anhydrides</td>
<td>–</td>
<td>–</td>
<td>◦</td>
<td>◦</td>
<td>○</td>
</tr>
<tr>
<td>Ethers</td>
<td>◦ ◦ ◦ ◦ ◦</td>
<td>◦ ◦ ◦ ◦ ◦</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Aromatic hydrocarbons</td>
<td>–</td>
<td>–</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Phthalate resins</td>
<td>–</td>
<td>–</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Melamine resins</td>
<td>◦ ◦ ◦ ◦ ◦</td>
<td>◦ ◦ ◦ ◦ ◦</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Ketone resins</td>
<td>◦ – ◦ – –</td>
<td>◦ – ◦ – –</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Carbamic acid resins</td>
<td>◦ – ◦ – –</td>
<td>◦ – ◦ – –</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Rosin-modified phenolic resins</td>
<td>– – ◦ ◦ –</td>
<td>– – ◦ ◦ –</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Urea resins, unplasticized</td>
<td>◦ ◦ ◦ ◦ ◦</td>
<td>◦ ◦ ◦ ◦ ◦</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Unsaturated alkyd resins</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
<tr>
<td>Unsaturated alkyd resins</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Epoxy resins, low molecular weight</td>
<td>+ + + + +</td>
<td>+ + + + +</td>
<td>◦</td>
<td>◦</td>
<td>◦</td>
</tr>
</tbody>
</table>

Compatibility Grades: ◦ = Limited compatibility / solubility – incompatible / insoluble

This information is based on our best knowledge and experience. We recommend conducting your own tests and experiments prior to use.

Solubility of POLYVEST® grades

POLYVEST® 110
- Alcohols: ○
- Phthalate Hydrocarbons: ○
- Amine hydrocarbons: ○
- Ethers: ○
- Esters: ◦
- Alcohols: ○
- Polyester hydrocarbons: ○

POLYVEST® 130
- Alcohols: ○
- Phthalate Hydrocarbons: ○
- Amine hydrocarbons: ○
- Ethers: ◦
- Esters: ○
- Alcohols: ○
- Polyester hydrocarbons: ○

POLYVEST® MA 75
- Alcohols: ○
- Phthalate Hydrocarbons: ○
- Amine hydrocarbons: ○
- Ethers: ◦
- Esters: ○
- Alcohols: ○
- Polyester hydrocarbons: ○

POLYVEST® HT
- Alcohols: ○
- Phthalate Hydrocarbons: ○
- Amine hydrocarbons: ○
- Ethers: ◦
- Esters: ○
- Alcohols: ○
- Polyester hydrocarbons: ○

POLYVEST® EP MA 120
- Alcohols: ○
- Phthalate Hydrocarbons: ○
- Amine hydrocarbons: ○
- Ethers: ◦
- Esters: ○
- Alcohols: ○
- Polyester hydrocarbons: ○

POLYVEST® HT
- Alcohols: ○
- Phthalate Hydrocarbons: ○
- Amine hydrocarbons: ○
- Ethers: ◦
- Esters: ○
- Alcohols: ○
- Polyester hydrocarbons: ○
Curing and chemical modification of POLYVEST® grades

<table>
<thead>
<tr>
<th>POLYVEST®</th>
<th>110</th>
<th>130</th>
<th>MA 75</th>
<th>EP MA 120</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curing</td>
<td>Polymer vulcanisation</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Oxidative drying</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Curing and modification via reaction with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amines</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Carboxylic acid or anhydrides</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Polyls</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Terpolyesters</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Curing and chemical modification of POLYVEST® grades via reaction of polymer backbone

POLYVEST® 110 / 130

- Oxidative drying
- Conversion with alcohols and polyols \(R' – OH \)
- Conversion with amines \(R – NH_2 \)

POLYVEST® MA 75 / EP MA 120

- Oxidative drying
- Conversion with amines \(R – NH_2 \)
- Conversion with alcohols and polyols \(R' – OH \)

POLYVEST® HT

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® Applications

<table>
<thead>
<tr>
<th>POLYVEST®</th>
<th>110</th>
<th>130</th>
<th>MA 75</th>
<th>EP MA 120</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives and sealants</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Coatings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Joint mortars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Linings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Polyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Curing and chemical modification of POLYVEST® grades via reaction of polymer backbone

POLYVEST® 110 / 130

- Oxidative drying
- Conversion with amines \(R – NH_2 \)
- Conversion with alcohols and polyols \(R' – OH \)

POLYVEST® MA 75 / EP MA 120

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® HT

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

Curing and chemical modification of POLYVEST® HT via hydroxyl groups

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® MA 75 / EP MA 120

- Oxidative drying
- Conversion with amines \(R – NH_2 \)
- Conversion with alcohols and polyols \(R' – OH \)

POLYVEST® HT

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® Applications

<table>
<thead>
<tr>
<th>POLYVEST®</th>
<th>110</th>
<th>130</th>
<th>MA 75</th>
<th>EP MA 120</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives and sealants</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Coatings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Joint mortars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Linings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Polyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Curing and chemical modification of POLYVEST® grades via reaction of polymer backbone

POLYVEST® 110 / 130

- Oxidative drying
- Conversion with amines \(R – NH_2 \)
- Conversion with alcohols and polyols \(R' – OH \)

POLYVEST® MA 75 / EP MA 120

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® HT

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

Curing and chemical modification of POLYVEST® HT via hydroxyl groups

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® Applications

<table>
<thead>
<tr>
<th>POLYVEST®</th>
<th>110</th>
<th>130</th>
<th>MA 75</th>
<th>EP MA 120</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives and sealants</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Coatings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Joint mortars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Linings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Polyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Curing and chemical modification of POLYVEST® grades via reaction of polymer backbone

POLYVEST® 110 / 130

- Oxidative drying
- Conversion with amines \(R – NH_2 \)
- Conversion with alcohols and polyols \(R' – OH \)

POLYVEST® MA 75 / EP MA 120

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® HT

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

Curing and chemical modification of POLYVEST® HT via hydroxyl groups

- Oxidative drying
- Conversion with isocyanates (e.g. MDI, TDI, IPDI)
- Conversion with anhydrides or carboxylic acids

POLYVEST® Applications

<table>
<thead>
<tr>
<th>POLYVEST®</th>
<th>110</th>
<th>130</th>
<th>MA 75</th>
<th>EP MA 120</th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives and sealants</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Coatings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Joint mortars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Linings</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Electrical insulations and potting compounds</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Polyls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Designed Polymers: Discover our global network

Find your regional contact:
http://evonik.com/adhesive-resins-contacts
POLYVEST® is a registered trademark of Evonik Industries AG or one of its subsidiaries.
This information and all further technical advice are based on our present knowledge and experience. However, it implies no liability or other legal responsibility on our part, including with regard to existing third party intellectual property rights, especially patent rights. In particular, no warranty, whether express or implied, or guarantee of product properties in the legal sense is intended or implied. We reserve the right to make any changes according to technological progress or further developments. The customer is not released from the obligation to conduct careful inspection and testing of incoming goods. Performance of the product described herein should be verified by testing, which should be carried out only by qualified experts in the sole responsibility of a customer. Reference to trade names used by other companies is neither a recommendation, nor does it imply that similar products could not be used.